Health monitoring of non-human primate colonies

Recommendations of the Federation of European Laboratory Animal Science Associations (FELASA) Working Group on Non-Human Primate Health accepted by the FELASA Board of Management, 21 November 1998

FELASA Working Group on Non-Human Primate Health: H. Weber (Convenor), E. Berge, J. Finch, P. Heidt, F.-J. Kaup, G. Perretta, B. Verschuere & S. Wolfensohn

FELASA, BCM Box 2989, London WC1N 3XX, UK

1 Preamble

Biomedical research has a need to use nonhuman primates in cases where no other species offer the specific scientific information required or the necessary predictability of results for the development of medicines and vaccines. Biomedical research institutions would prefer purpose-bred animals of known history with an amount of background information necessary for an unbiased interpretation of findings from animal experiments. It is also anticipated that the microbiological status of such animals is easier to define and to control and better than that of animals from other sources.

Due to the difficulty in predicting requirements and the high investment costs of setting up colonies especially with breeders born in captivity, the breeding establishments existing at present have not yet established sufficiently large breeding colonies, especially with captive-born breeders, to fulfil the requirements of biomedical research for purpose-bred animals of all of the commonly used species. However, even animals from other sources should be delivered with a report on the health status after a quarantine period at the supplier institution. Good Laboratory Practice requires that sufficient background information is available to allow for accurate interpretation of findings from animal experiments. This means that besides

endeavouring to rid breeding colonies of unwanted agents, regular monitoring and honest reporting of the findings is imperative. Moreover, a reliable health monitoring programme at the supplier's centre usually allows clients to shorten the quarantine procedures that are prescribed by national authorities in the countries of destination. A certification of the health status of nonhuman primates should also accompany all primate shipments from suppliers to research institutions or between these institutions. Individual lifetime records should, besides mentioning any periods of illness, test results of individual samples and vaccinations, be accompanied by a health status certification of the colony from which it originates and other colonies in which it was kept.

At present no single recognized health control programme exists for laboratory primates. The requirements outlined in these recommendations are intended to harmonize existing protocols. They may be subject to remodelling due to the emergence of possible new pathogens as well as to developments in the use of non-human primates in biomedical research, chiefly in view of transplantation studies. Many, if not the majority, of the available purpose-bred animals of the larger non-human primate species still belong to the F_1 generation of parents captured in the wild. These are potential carriers of microbiological agents endemic in the wild population. In view of the longevity of primates,

problems with the breeding performance of animals born and reared in captivity, and the high demand for purpose-bred animals, this situation will continue for some years. According to those tests which have already been performed on request, some breeding colonies are free of certain, but usually not all of the microbiological agents potentially interfering with biomedical research data or transmissible to humans. Besides, monkeys are often susceptible to the same agents as humans and, therefore, may acquire some that are not present in their natural environment through close contact with humans. Health monitoring of the animal care staff is essential both for the protection of the staff itself, as well as to avoid introducing disease agents.

The recommendations are directed to breeders, other suppliers and users holding non-human primate colonies for prolonged periods of time. It is concerned with the most commonly used species in Europe. These are:

- Cynomolgus monkeys (Macaca fascicularis)
- Rhesus monkeys (Macaca mulatta)
- Green monkeys or vervets (Cercopithecus aethiops, synonym: Chlorocebus aethiops)
- Baboons (Papio, various species)
- Squirrel monkeys (Saimiri sciureus)
- Marmosets (generally Callithrix jacchus)

It was not considered necessary to include apes, since these are used in Europe only at two specialized institutes having their own specific health control requirements.

2 Certification of health status of animals by the supplier

Though it would be desirable to gradually obtain non-human primates free of pathogens, it must be realized that, unlike rodents, such animals are at present not available in sufficient numbers. The main aim of these recommendations are, however, to encourage suppliers to provide the users with all the information that is important for the interpretation of their experimental results and for working safely with the animals received. Breeding establishments should be able to control and document the health status of their colonies and the animals supplied. This involves thorough clinical of pathological examinations of individual animals and the use of regular appropriate laboratory tests of the population maintained in the same unit. Animals from sources other than closed breeding colonies should be kept under quarantine at the supplier centre and undergo the same examinations for the presence of disease before delivery.

Single negative laboratory tests obtained shortly before shipment are only of relevance if the animals have been prevented from contact with potentially infected animals (or humans) for the incubation period of the disease. If this is not the case it would be more informative to know the incidence of positive animals within the group or unit in which the monkeys were kept. A 'unit' is defined as a self-contained microbiological entity. As a rule all individuals of a unit with seropositive animals, or animals showing other evidence of infection should be considered as potential carriers of the infectious agent if not otherwise proven.

3 List of pathogenic and other undesirable microbiological agents

In Tables 1 and 2 of the appendix a list of microorganisms and parasites is provided which is chiefly based on current concern, on the health risk for personnel handling the animals, and the frequency with which the agents are found in laboratories using nonhuman primates. Other criteria for inclusion were infections that may spread in a colony without or prior to clinical symptoms, and could cause disease in more susceptible species or immune-deficient animals. Beside those agents included in Tables 1 and 2 of the appendix, non-human primates are known to harbour a number of further microorganisms and parasites that may be pathogenic or interfere with experiments. Of those not considered in the tables Yersinia pestis, that is known to be endemic in the rat population in certain regions, and Bordetella spp., Helicobacter pylori, Klebsiella, Pseudomonas aeruginosa as ubiquitous microorganisms as

well as *Filaria* spp. that have occasionally been found in groups of New World primates may turn out to be important in the future.

Not much is known of the influence of inapparent infections on the experimental results, but where this is the case it is mentioned in Table 1 and the agent has been included in the tables even though an infection may have no known clinical importance for the animals themselves or humans.

Based on current concern in view of transmission to humans and frequency of findings, a reduced list of microbiological agents and parasites for which testing is considered as mandatory is presented for the primate groups from the three areas of Africa, Asia and South America. For most of the agents in the following three lists monitoring is commonly requested. However, any other agent, including those mentioned in Tables 1 and 2 should be reported in health certificates when found to be present or identified as cause of a disease outbreak.

3.1 Macaques

Herpes B (*Cercopithecine herpesvirus 1*) Hepatitis A virus Simian immunodeficiency virus (SIV) Simian T-cell lymphotropic virus (STLV-1) Simian retrovirus type D (SRV/D) Filovirus screen with specification if positive

Mycobacteria spp. Salmonella spp. Shigella spp. Leptospira spp.

In endemic areas: Pseudomonas pseudomallei (Burkholderia pseudomallei)

Entamoeba histolytica Toxoplasma gondii Pneumonyssus simicola (diagnosis at necropsies) Intestinal helminths Ectoparasites Dermatophytosis

3.2 Baboons and vervets

Herpesvirus papio 2 (Cercopithecine herpesvirus 12, HPV/2) in baboons Herpesvirus cercopithecinus (Cercopithecine herpesvirus 2, SA 8) in vervets Hepatitis A virus

Simian immunodeficiency virus (SIV) Simian T-cell lymphotropic virus (STLV-1) Filovirus screen with specification if positive In endemic areas: Monkeypox virus; Yellow fever virus

Mycobacteria spp. Salmonella spp. Shigella spp. Leptospira interrogans

Entamoeba histolytica Toxoplasma gondii Intestinal helminths Ectoparasites Dermatophytosis In endemic areas: Plasmodia

3.3 Saimiri sciureus and Callithrix jacchus Salmonella spp. Shigella spp. Leptospirosis interrogans

Entamoeba histolytica Intestinal helminths Ectoparasites Dermatophytosis In endemic areas: Plasmodia

It is advised that initially or after changes of the colony composition a complete microbiological profile of the non-human primate colony be established. The term 'initially' refers to the start of a new unit, commencement of a diagnostic test programme in an established unit, after a disease eradication programme or during quarantine of non-human primates intended for biomedical research. For primate colonies already committed to a health control programme, the initial more frequent testing for the declaration of absence of an infectious agent is not necessary, provided three consecutive tests at one-year intervals within the preceding two years were negative.

Once the microbiological status has been defined, the requirement for inclusion in a regular testing programme only applies to those agents for which there is a risk of introduction and spread within the colony or unit. A colony or unit may, however, only be declared free of a certain agent if it has been tested for the corresponding agent according to Table 2. For diseases declared to be absent in the region of the non-human primate colony by a competent national authority no monitoring for that specified agent is needed. The same may apply to a colony into which no new animals are introduced provided it is housed in units for which an infection by a specific agent can be excluded due to its closed construction.

Periodical testing is also not necessary except for scientific or epidemiological reasons—if laboratory test results or overt clinical disease indicate that the colony harbours a certain microorganism or parasite and if no measures have been taken to eliminate it. In the latter case the presence of the agent has to be mentioned in all subsequent health reports until an attempt to eradicate it has been undertaken.

While it will reveal the efficiency of the vaccination scheme, antibody testing of vaccinated animals is also not necessary for the health monitoring report. The vaccination, however, has to be mentioned in the certificate, and is no proof of absence for that particular agent.

4 Monitoring procedures, sampling and sample sizes

The test methods mentioned in Table 2 reflect currently applied techniques used in the relevant publications and by the existing specialized diagnostic laboratories. In general the most appropriate and updated method should be used. No attempt has been made to suggest the use of a specific method, but by experience of members of the group, for some microorganisms the results may differ between the diagnostic laboratories and the test methods applied. It is, therefore, absolutely necessary to mention the applied method and the testing laboratory in the report. Improvement of the reliability of the diagnostic tests is highly desirable.

The minimal number of samples (serum, faeces) for screening colonies or units shall be 10. These samples should be gathered randomly for each 'unit' (understood as self-contained microbiological entity) from indi-

vidual animals. They should not be pooled. Theoretically this sample size will detect an infection incidence of 25–30% in the unit with a probability of 95%. Negative results in single tests only mean that those animals selected for screening had not developed antibodies or were not shedding bacteria or parasites at the time the samples were taken. Equivocal or unexpected test results should be confirmed by repeating the test with the same animal and possibly using another diagnostic method. On the other hand in periodical standard investigations different animals should be used in succeeding tests.

All samples should be taken from live animals or at least within a few hours after the death of the animals. However, the identification of any pathogenic agent in organic material at even a later stage is regarded as proof for the presence of this agent within the colony.

Serum samples for antibody testing should preferably be obtained from animals over one year in age whereas faecal samples for the detection of bacteria and parasites are often more informative when taken from juvenile animals or at weaning and on three consecutive days.

Some clients require tests to be performed on each individual animal before shipment. In the future this may also be a requirement of national veterinary offices. It is considered as good practice to inspect each outgoing animal before shipment. Taking the required number of 10 animals per unit annually into account, the results of these examinations may, of course, and should be used for the health monitoring report on the unit from which the animals for exportation were selected.

Additional or intermediate tests to those listed above may be required for the diagnosis in animals with clinical signs of disease or on request of clients for the clarification of unexpected results. It is also reasonable to perform a full necropsy of all dead animals from a unit and include the findings in the health monitoring programme and reports. Such findings as well as those obtained from routine clinical inspection (e.g. ectoparasites) may help reduce the costs for standard periodic investigations. For some parasites (e.g. lung mites and *Filaria* spp.) necropsies are the only reliable diagnostic method.

For the shipment of serum samples to diagnostic laboratories it may be requested to inactivate the serum to reduce the risk of human infection. Methods recommended are heat inactivation (56°C for 30 min) or addition of merthiolate to the serum (1:10). All sample vials must be shipped leak- and break-proof.

Some countries require a CITES certification for the import of serum from nonhuman primates. Since the regulations for the import and transport of biologicals vary from one nation to the other and may occasionally be modified, it is recommended to obtain the necessary instructions from the testing laboratory well in advance of the shipment.

5 Eradication and treatment: declaration of freedom of specified agents

The eradication possibilities referred to in Table 2 should be considered as suggestions. Experience gained with attempts to obtain pathogen-free colonies are scarce at present. Methods used for other laboratory animals (Caesarean section, embryo transfer) are hardly feasible for non-human primates for obvious reasons. Even hand-rearing of newborn animals could lead to behavioural problems when they are to be used as founders of breeding colonies.

Where therapeutics are available this is indicated in Table 1. Antibiotic treatment is, however, not always reliable for complete elimination of microbes. For some diseases no effective treatment is known. In such cases separation of infected from noninfected animals and initial frequent testing of the latter (if necessary during a quarantine period in individual cages) may be the only solution for eliminating pathogenic agents from colonies or units.

Vaccination may in some cases be acceptable as protective measure for animal groups if free of the corresponding microorganism and when the risk of re-infection is otherwise unavoidable. However, the differentiation between vaccinated and naturally infected animals could cause problems. Vaccination may also not be advisable for animals to be used in immunological studies.

The elimination of many of the agents listed in the attached Tables 1 and 2 from monkey colonies may only be achieved in stages. Nevertheless, consideration should be given from the onset about precautions against the spread of these agents within the colonies and introduction by wild mammals, birds, insects, man and materials, Such measures may include fences or walls with electrical wiring around the compounds. entry locks with disinfectants and spacing the individual enclosures or units sufficiently far apart to avoid cross contamination. Within the compounds or units rodent and insect traps could be used to eliminate possible vectors. A plan for the disinfection of material that could be exchanged between units as well for the periodical disinfection of enclosures should be established. Attention should be paid to the construction of the waste-water system as a possible source of cross-contamination.

6 Health monitoring report

A major purpose of health monitoring of animals of breeding and other supplier establishments or in experimental units is to provide the user with data on variables that might influence the outcome of the experiment. These data are part of the experiment and have to be considered during the interpretation of the results by the investigator and by the reader of a publication. Authors of scientific articles should, therefore, be able to provide the information on the health status of their animals used on request.

For non-human primates that may harbour disease agents transmissible to man, monitoring and reporting the health status of the animals is also essential for protective measures to be taken on behalf of personnel handling the animals at the breeding site, during transport and at the research centre.

The health monitoring certificate of a nonhuman primate facility should include the following information:

- (1) Species, breed, and unit for which the report is valid.
- (2) Date of colony/unit establishment or restocking or re-derivation.
- (3) Microorganisms/parasites monitored and listed alphabetically in the order: viruses; bacteria, fungi, protozoa, other parasites. In general species names of microorganisms and parasites should be used. General genus designations are acceptable where group diagnosis is sufficient.
- (4) Date of latest investigation, diagnostic method used and name of the testing laboratory.
- (5) Results of latest investigation: number of positive/negative animals versus number of animals tested.
- (6) Dates, test method, testing laboratory and results of the two or three preceding investigations if results of latest investigation are negative.
- (7) Dates, test method, testing laboratory and results of intermediate ad hoc investigations (necropsies, sick animals, customer requested microorganisms) not included in the standard health monitoring programme should be added as complementary information.
- (8) If abbreviations are used for test methods or diagnostic laboratories these should be explained separately.

As an example for a health report for primate units in accordance with FELASA recommendations a specimen sample form for macaques is added as an appendix. Reports concerning other species should be adapted according to the lists in Parts 3.1 to 3.3 of this Report.

7 Final remarks

While it is clear that FELASA cannot accept responsibility for tests and their implications, breeders or users of laboratory animals who are reporting on the health status of their animals may use the wording 'in accordance with FELASA recommendations' under the following conditions:

• The microorganisms monitored correspond with those listed as mandatory in this recommendation. Additional pathogenic microorganisms found should also be reported.

- Frequency of investigations and number of animals submitted to tests correspond with these recommendations.
- Reporting of current and historical results, treatments and vaccinations comply with these recommendations.
- The breeding colonies are under on-site veterinary supervision and standard operating procedures are available.

FELASA is aware of the fact that following these recommendations will increase the costs for supplying non-human primates. It has, therefore, been the aim of the Working Group to recommend only a minimal frequency of testing by defining the conditions under which further testing of certain microorganisms need not be performed, and allowing for the inclusion of results from other investigations (e.g. for the shipment of animals) in the standard monitoring system.

Experience shows that results obtained from different diagnostic laboratories may vary considerably depending on the methods used. Aims to standardize or correlate the methods applied by use of reference laboratories should be encouraged.

Improving the health status of non-human primate colonies will take some time. It is, therefore, at present not possible to exclude animals with potential pathogens completely from research. Nevertheless, regular control and reporting of the health status are basic requirements for the characterization of animals used in research.

References

This document was compiled using the expertise of the members of the Working Group and their personal literature resources. For further reading we refer to the following documents:

- Advisory Committee on Dangerous Pathogens (1998) Working Safely with Simians: Management of Infection Risks. Specialist Supplement of Working Safely with Research Animals: Management of Infection Risks. London: HSE books
- Brack M (1998) Zoonoses of non-human primates a review. In: European Association of Zoo and Wildlife Veterinarians (EAZWV). Proceedings of

FELASA Working Group on Non-Human Primate Health

the Second Scientific Meeting, 21–24 May 1998 (Zwart P, Dollinger P, Pagan O, eds). Berne, Secr: EAZWV, pp 25–41

Buchl St J, Keeling ME, Voss WR (1997) Establishing specific pathogen-free (SPF) non-human primate colonies. *ILAR Journal* 38, 22–7

Council of the European Communities (1993) Council Directive 93/88/EEC of 12 October 1993 amending Directive 90/679/EEC on the protection of workers from risks related to exposure to biological agents at work (seventh individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC). Official Journal of the European Communities No. L 268, pp 71–82

Eberle R, Black DH, Lehenbauer TW, White GL (1998) Shedding and transmission of baboon *Herpesvirus* papio 2 (HVP2) in a breeding colony. *Laboratory Animal Science* **48**, 23–8

Fisher-Hoch SP, Perez-Oronoz GI, Jackson EL, Hermann LM, Brown BG (1992) Filovirus clearance in non-human primates. *Lancet* **340**, 451–3

Gozalo A, Lucas C, Cachay M, Montoya E, Ballou WR, Wooster MT, Watts DM (1997) Prevalence of antibody to *Plasmodium falciparum* antigens among feral Saimiri monkeys in the Amazon basin region of Peru. *Journal of Medical Primatology* **26**, 204–6

Gracenea M, Gómez MS, Fernández J, Feliu C (1998) Secnidazol vs paromomycin: comparative antiprotozoan treatment in captive primates. *Journal of Medical Primatology* 27, 38–43

Heckel J-O (1998) Verbreitung und Epidemiologie des Hepatitis B Virus in Primatenbeständen (Distribution and Epidemiology of the Hepatitis B Virus in Primate Colonies). Thesis (German). Veterinary Faculty of the Ludwig Maximilian University, Munich (D)

Heneine W, Switzer WM, Sandstrom P, et al. (1998) Identification of a human population infected with simian foamy viruses. *Nature Medicine* **4**, 403-7

Kalter SS, Heberling RL, Cooke AW, Barry JD, Tian PY, Northam WJ (1997) Viral infections of nonhuman primates. *Laboratory Animal Science* 47, 461–7

Lerche NW, Yee JL, Jennings MB (1994) Establishing specific retrovirus-free breeding colonies of macaques: an approach to primary screening and surveillance. *Laboratory Animal Science* **44**, 217– 21

Martino MA, Hubbard GB, Butler TM, Hilliard JK (1998) Clinical disease associated with Simian agent 8 in the baboon. *Laboratory Animal Science* **48**, 18–22

Michaels MG (1998) Xenotransplant-associated infections. Laboratory Animal Science 48, 228–33

Muchmore E (1987) An overview of biohazards associated with nonhuman primates. *Journal of Medical Primatology* **16**, 55–82

- Morozov VA, Lagaye S (1998) Latent foamy and simian retroviruses in healthy African green monkeys used in biomedical research. Lancet 351,
 - 1705
- Mukinda VBK, Mwema G, Kilundu M, Heymann DL, Khan AS, Esposito JJ and other members of the Monkeypox Epidemiologic Working Group (1997) Re-emergence of human monkeypox in Zaire in 1996. Lancet **349**, 1449–50
- Potkay S (1992) Diseases of the Callithricidae. Journal of Medical Primatology 21, 189–236

Roizman B (1996) Herpesviridae. In: Virology, 3rd edn,
Vol. 2 (Fields BN, Knipe DM, Howley PM, eds).
Philadelphia: Lippincott-Raven, pp 2221–30

Shalev M (1996) Regulation watch. Federal and state regulations concerning filovirus testing in monkeys imported into the United States. Lab Animal 25(6), 14–16

Small JD (1984) Rodent and lagomorph health surveillance—quality assurance. In: *Laboratory Animal Medicine* (Fox JG, Cohen BJ, Loew FM, eds). New York: Academic Press, pp 709–23

Sotir M, Switzer W, Schable C, Schmitt J, Vitek C, Khabaz RF (1997) Risk of occupational hazard to potentially infectious nonhuman primate materials and to simian immunodeficiency virus. *Journal of Medical Primatology* 26, 233–40

Taylor Bennet B, Abee CR, Hendrikson R (1995) Nonhuman Primates in Biomedical Research, Biology and Management, San Diego: Academic Press

Taylor Bennet B, Abee CR, Hendrikson R (1998) Nonhuman Primates in Biomedical Research. Diseases. San Diego: Academic Press

Vandermeersch CA (1990) Diagnostic Differentiel des Principales Affections Recontrées chez les Primates Non Humains et Contrôles des Zoonoses, Thesis (French). Faculté de Medicine de Creteil (F)

Vidal S (1997) La Detection des Virus des Primates avant Importation, Interêt pour la Santé Humaine, la Santé Animale et la Qualité des Experimentations, Thesis (French). Ecole Nationale Vétérinaire de Lyon (F)

Ward JA, Hilliard JK (1994) B virus-specific pathogenfree (SPF) breeding colonies of macaques: issues, surveillance, and results in 1992. Laboratory Animal Science 44, 222–8

Weigler BJ, Hird DW, Hilliard JK, Lerche NW, Roberts JA, Scott LM (1993) Epidemiology of Cercopithecine herpesvirus 1 (B virus) infection and shedding in a large breeding cohort of rhesus macaques. *Journal of Infectious Diseases* 167, 257–63

Whitley RJ (1993) The biology of B virus (Cercopithecine virus 1). In: *The Human Herpesviruses* (Roizman B, Whitley RJ, Lopez C, eds). New York: Raven Press Ltd, pp 317-28

Zack PM (1993) Simian haemorrhagic fever. In: Nonhuman Primates, Vol. 1 (Jones PC, ed). Springer, pp 118-31

Agent	Carrier species	Clinical symptoms in primates	Transmission	Zoonotic potential: symptoms in man (risk category according to EU)	Special remarks
 (1) Viruses B virus, Herpesvirus simiae, Macaques Cercopithecine herpesvirus 1 	Macaques	Mostly asymptomatic, occasionally lesions in mouth	Saliva and body fluids in bites and scratches, mucosal contamination	Neurological/lethal (3)*	
Herpesvirus cercopithecus, (5A 8), Cercopithecine herpesvirus 2	Vervets, (baboons)	Mostly asymptomatic, recurrent herpetic lesions	Saliva	Zoonotic potential not recorded	
Herpesvirus papio 2 (HVP/2), Cercopithecine herpesvirus 12	Baboons	Mostly asymptomatic	Saliva, venereal	Zoonotic potential not recorded	
Herpes T, Herpesvirus platyrrhinae, Saimiriine herpesvirus 1	South American species	Mostly asymptomatic in Saimiris, but severe lip ulcerations and morta- lity in <i>callithricidae</i> and owl monkeys	Saliva and excreta are infective	Zoonotic potential not recorded	Callithrix species may also become asymptomatic carriers
Herpesvirus saimiri, Saimiriine herpesvirus 2	Saimiri sciureus	Mostly asymptomatic, occasionally lesions in mouth, but malignant lymphoma in marmosets	Experimental inocu- lation; natural route of infection unknown	None (not classified)	
Hepatitis A virus	All species	Asymptomatic, hepatitis rare	Contact with excreta	Hepatitis (2)	Vaccine available
Hepatitis B virus	Gibbons and great apes	Occasionally antibodies identified in macaques and vervets, but no proven disease	Blood contact, skin lesions	Hepatitis (3)	Antibodies found in macaques (ELISA) not confirmed in serum neutralization tests
SV 40	Macaques, transmissible to other species	Asymptomatic	Contact with secreta and urine, infected vaccines	Presumed cancerogenic potential (2 for Papovavirus)	Interference with cancer research and vaccine production
Simian haemorrhagic, fever virus	Patas and possibly other African species, macaques probably only terminal infection	In macaques haemorrhagic disease with high mortality, no symptoms in patas, occasionally pathogenic in vervets	Contact with excreta, secreta and blood (needles)	Not proven (not classified)	High antibody incidence in newly imported patas. Occasional seropositive baboons reported. Out- breaks in macaques ascribed to accidental contacts (transport, vials)

	Of concern for Cynomolgus monkeys from Philippines	Of concern in trans- plantation studies and because of close relationship to HIV types	Of concern in trans- plantation studies and AIDS-related research	Of concern in trans- plantation studies and AIDS-related research	Of concern in trans- plantation studies and AIDS-related research	Testing recommended for monkeys from Africa. Vaccination possible	Risk of acquisition in endemic areas, long incubation period possible. Vaccination possible	Vaccination possible	Antibiotic treatment possible
Haemorrhagic diarrhoea, Iethal (4)	No known pathogenicity in humans, however, (3) for other Ebola	No human cases known, but seroconversion reported (3 for HIV)	Resembles HTLV-1 which may cause leukaemia (3 for HTLV-1)	Antibodies found in humans but no known pathogenecity	Antibodies found in humans but no known pathogenecity	Pox lesions (3)	Rabies (3)	Yellow fever (3)	Gastrointestinal (2)
Contact with blood and tissue from infected animals	Contact with excreta, aerogenic not excluded	Blood contact, skin lesions	Possibly bites and scratches	Possibly bites and scratches contaminated with saliva	Possibly contact with excreta	Contact with excreta, aerogenic	Saliva in wounds	Mosquitoes	Direct contact with excreta
Exanthema, haemorrhagic diarrhoea reported in macaques	Asymptomatic or up to severe haemorrhagic disease	Mostly asymptomatic in African species. AIDS-like disease in Asian species	Asymptomatic but occasionally associated with lymphoproliferation	Simian AIDS	Usually asymptomatic	Mostly asymptomatic; fever, exanthema in susceptible species	Rabies	Varying from inapparent to lethal in South American species	Mostly asymptomatic; anorexia, diarrhoea, abortion possible
Vervets	Macaca fascicularis	Old World monkeys, species-specific, as source. Secondary transmission to Asian species	Old World species	Asian species	Old and New World species	Various species in Central Africa/Zaire	Various species	African and New World species	Various species including primates
Marburg virus	Ebola-Reston virus	Simian immunodeficiency virus (SIV)	Simian T-cell lymphotropic virus-1 (STLV-1)	Simian retrovirus, type D (SRV/D)	Foamy virus	Monkeypox virus	Lyssa virus (rabies)	Yellow fever virus	 (2) Bacteria Campylobacter jejuni fetus

S1:11

(continued)

Table 1 (continued)					
Agent	Carrier species	Clinical symptoms in primates	Transmission	Zoonotic potential: symptoms in man (risk category according to EU)	Special remarks
Leptospira interrogans Various serovars 	Rodents, various primate species	Mostly asymptomatic, occasionally fever, abortions	Food and water contaminated with urine; ingestion of mice	Fever, gastrointestinal, icterus, neuromeningal complications (2)	Antibiotic treatment possible. Vaccination for humans
Mycobacterium • africanum • bovis • tuberculosis	Cattle, various other species, Old World primates, humans	Progressive, generalized and lethal TB. New World species less susceptible	Excreta, enteral or through skin lesions, aerogenic	Generally respiratory (3)	Tuberculostatics not recommended because no cure possible. BCG vaccination has only transient efficacy
Salmonella • typhimurium • enteritidis	Various species including non- human primates	In adults mostly asymptomatic; in juveniles gastrointestinal symptoms	Ingestion of excreta	Gastrointestinal (2 or 3, depending on type)	Antibiotic treatment possible
Shigella • flexneri	Various species including non-human primates	Often without symptoms except young animals	Ingestion of excreta	Gastrointestinal (2)	Antibiotic treatment possible
Yersinia pseudotuberculosis	Rodents, birds, transmission to non- human primates	Primates: acute lethal or chronic with diarrhoea or simply weight loss	Ingestion with contaminated food	Often subclinical or unspecific symptoms (2)	Antibiotic treatment possible
Pseudomonas pseudomallei (Burkol- deria pseudomallei)	Chiefly species in Southeast Asia	Mostly without clinical symptoms, occasionally broncho-pneumonia, enteritis often occult, clinically multiple abscesses	Oral, mucosal or aerogenic	Stress-induced pulmonary affections, abscesses, often long after infection (3)	Antibiotic treatment possible but not recommended
(3) Parasites Entamoeba histolytica	All primate species	Normally asymptomatic. Arboreal species may be more susceptible for diarrhoea	Ingestion after contact with faeces	Generally non-pathogenic types (2, if pathogenic)	No successful treatment for permanent eradication. Typing for human pathogenic strains recommended

									1
Contamination of humans by primates normally unlikely. Interference with research on trans- plantation and immunodeficiency	Available treatment not effective for permanent eradication	Interference with haematology testing when indicated by origin of animals. Treatment possible	Treatment possible	Treatment possible	Treatment possible, but not reliable	Interference with research on respiratory system. Treatment (reneated) prossible	Treatment possible	Treatment possible	
Rarely fever and apathy, occasionally abortion or congenital abnormalities (2)	Gastrointestinal troubles in children (2)	Evidence for transmission is lacking (2 or 3 for human types)	Gastrointestinal problems possible (2)	Diarrhoea (2)	Not known in humans	Disputed	Dermatitis	Localized alopecia (2)	
Ingestion after contact with faeces or of contaminated rodents	Ingestion after contact with faeces	Mosquitoes	Contact with faeces; larvae can penetrate skin	Ingestion after contact with faeces	Cockroaches	Not clear, possibly contact with sputum	Direct contact or with contaminated material	Direct contact or through contaminated utensils	ecent names added in bolc
Usually no apparent clinical symptoms	Macaques: sometimes intermittent mucoid diarrhoea	Often asymptomatic, fever, anaemia occasionally lethal	Normally asymptomatic	Usually asymptomatic, diarrhoea (heavy infestation)	Usually asymptomatic, occasionally anaemia	Usually asymptomatic	Pruritus, skin lesions	Localized alopecia	* In the UK upgraded to 4 in 1998. For the nomenclature, current designations were used and recent names added in bold
Various species. Cats are only species considered to excrete transmissible oocysts	Old World monkeys	Seen in macaques, in saimiris, ateles transmitted from humans	All primate species	All primate species, humans may be host	South American species	Macaques, baboons	Old and New World species (occasional)	Seen in macaques	1998. For the nomenclat
Toxoplasma gondii	Giardia spp.	Plasmodia species • P. cynomolgi • P. brasiliensis • P. malariae, vivax	Strongyloides stercoralis	Trichuris	Prosthenorchis elegans	Pneumonyssus simicola	Ectoparasites Mites Lice 	(4) Dermatomycosis Trichophyton	* In the UK upgraded to 4 in

S1:13

have to be used

(continued)

Agent	Laboratory diagnosis (current methods used by specialized laboratories and referred to in publications)	Testing interval	Proof of absence after eradication measures or at the start of a testing programme	Eradication possibilities
(1) Viruses B virus, Herpesvirus simiae, Cercopithecine herpesvirus 1	Serology: • ELISA • CFR • Neutralization T • RIA PCR	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	Separation of positive animals from colony. Separation of weanling animals from potentially positive colonies
Herpesvirus cercopithecus, (SA 8), Cercopithecine herpesvirus 2	Serology: • ELISA • IFA	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	No efforts known to rid colonies of virus
Herpesvirus papio (HVP/2) Cercopithecine herpesvirus 12	Serology: • ELISA • IFA • Immunoblot	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	No efforts known to rid colonies of virus
Herpes T, Herpesvirus platyrrhinae, Saimiriine herpesvirus 1	Serology: • Neutralization T	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	No efforts known to rid colonies of virus. Strict separation of species
Herpesvirus saimiri, Saimiriine herpesvirus 2	Serology: • IFA	Initially 1 month, later annually or all outgoing animals	Four consecutive negative tests	No efforts known to rid colonies of virus. Strict separation of species
Hepatitis A virus	Serology: • ELISA	Initially 1 month, later annually or all outgoing animals	Four consecutive negative tests	Separation of positive animals from colony
Hepatitis B virus	Serology: • ELISA • Neutralization T	Initially 1 month, later annually or all outgoing animals	Four consecutive negative tests	Separation of positive animals from colony
SV 40	Serology: • IFA	Initially 1 month, later annually or all outgoing animals	Four consecutive negative tests	Separation of positive animals from colony
Simian immuno- deficiency virus (SIV)	Serology: • IFA	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals
Simian T-cell lympho- tropic virus-1 (STLV-1)	Serology: • ELISA • IFA • WB	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals
Simian retrovirus type D (SRV/D)	Serology: • IFA • WB Isolation from peripheral lymphocytes	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals
Foamy virus	Serology: • IFA • CFR	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals. Due to high preval- ence in existing colonies animals from less infected sources may

Table 2 Laboratory diagnosis, testing intervals, proof of absence and suggested methods for eradication of microorganisms of current concern in non-human primates

Agent	Laboratory diagnosis (current methods used by specialized laboratories and referred to in publications)	Testing interval	Proof of absence after eradication measures or at the start of a testing programme	Eradication possibilities
Simian haemorrhagic fever	Serology: • IFA	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals
Filoviruses Reston Ebola Marburg	Serology: • ELISA • Ag capture PCR	Initially 3 months, later annually or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals
Monkeypox virus	Serology: • ELISA • Neutralization T	Initially 1 month, later (only in endemic areas) annually or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals from non endemic areas. Alternative: Vaccination
Yellow fever virus	Serology: • Neutralization T • ELISA • CFR	Initially 14 days, later (only in endemic areas) 6 months or all outgoing animals	Four consecutive negative tests	Formation of units with seronegative animals where vector trans- mission is excluded
(2) Bacteria Campylobacter spp.	Serology: • CFR Culturing of fresh faecal samples on selective media	Serology initially 2 weeks, later 6 months	After three negative tests	Treatment of all animals of the corresponding unit
Leptospirosis interrogans, various serovars	Serology: • CFR, ELISA, Agglut-Lysis Reaction Culturing of blood or urine samples	Initially 4 weeks later 6 months	After 12 weeks with three negative tests	Treatment of all animals of the corresponding unit
Mycobacteria spp.	Tuberculin test	Initially 2 to 4 weeks, later 6 months	After 12 weeks with at least three negative tests	Immediate culling of all infected animals and quarantine of affected unit
Pseudomonas pseudo- mallei (Burkholderia pseudomalle i)	Serology: • ELISA	Serology initially 2 weeks, later 6 months	After three negative tests	Eradication of sick animals and treatment of unit
Salmonella spp.	Culturing of fresh faecal samples of selective media. Sero- typing for species	Initially daily tests for 3 days repeated after 2 weeks. Later 6 months (3-day test)	After two negative test series	Treatment of all animals of the corresponding unit
Shigella spp.	Culturing of fresh faecal samples on selective media	Initially daily tests for 3 days repeated after 2 weeks. Later 6 months (3-day test)	After two negative test series	Treatment of all animals of the corresponding unit
Yersinia pseudo- tuberculosis	Serology: ∙ HA	Serology initially 2 weeks	After three negative tests	Treatment of all animals of the corresponding unit
(3) Protozoa and parasites				
Entamoeba histolytica	Microscopy of faeces and typing for pathogenic strains	Initially 2 weeks later annually	Four consecutive negative tests	Treatment results only in transient disappearance

Table 2 (continued)

(continued)

Agent	Laboratory diagnosis (current methods used by specialized laboratories and referred to in publications)	Testing interval	Proof of absence after eradication measures or at the start of a testing programme	Eradication possibilities
Plasmodia	Haematology, Giemsa	Initially 2 weeks later annually	Three consecutive negative tests	Medical treatment of infested animals, Anti- mosquito programme
Toxoplasma gondii	Serology: • Sabin-Feldmann • IFA • ELISA PCR	initially 2 weeks later annually	After three negative consecutive tests	Elimination of positive animals. Prevention of rodent or cat contact
Pneumonyssus simicola	Thorough post- mortem inspection of lungs of adult animals	Continuous	No findings during one year, provided it has been possible to examine at least 10 animals per unit	Treatment of all animals of the corresponding unit
Prosthenorchis elegans	Sedimentation tech- niques of faecal samples	Initially 2 weeks later annually	Four consecutive negative tests	Separation of positive animals, effort to treat all animals of unit. Control of insect transmission
Strongyloides stercoralis	Microscopy of faeces	Initially 2 weeks later annually	Four consecutive negative tests	Treatment of all animals of the corresponding unit
Other endoparasites	Microscopy of faeces	Initially 2 weeks later annually	Four consecutive negative tests	Treatment of all animals of the corresponding unit
Ectoparasites	External inspection of animals	Continuous	One year no findings, provided it has been possible to examine at least 10 animals, and animals from all units	Treatment of all animals of the corresponding unit
Trichophyton	Clinical inspection, scanning with Wood's lamp, microscopy of scrapings from skin lesions in KOH	Continuous clinical inspection	One year no findings, provided it has been possible to examine at least 10 animals, and animals from all units	Separation and treatment of infected animals

Table 2 (continued)

Ag. Capture: antigen capture; CFR: complement fixation reaction; ELISA: enzyme linked immunosorbent assay; HA: haemagglutination test; IFA: immunofluorescence antibody assay; PCR: polymerase chain reaction; RIA: radio immune assay; WB: Western blot

.

.

HEALTH STATUS REPORT FOR NON-HUMAN PRIMATE COLONIES

in accordance with FELASA recommendations

(Sample specimen for *Macaca mulatta*. Reports for other species to be adapted according to lists in Part 3 of this Report)

Date of issue:						
Name and addres	s of ins	stitute:				
Tel:		Fax:		E-mail:		
Standard operatir	ng proc	edures availab	le from:			
Species: M. mulat	ta	. Designat	ion or number	of unit:		
Date of colony fo		2				
Dute of colony to	anaaci					
			and results (R = r d (M) and diagn Previous test			
						<u> </u>
1. VIRAL INFECTIONS Cercopith herpesvirus 1	D/R					
	M/L		<u> </u>			
Hepatitus A virus	D/R M/L			•••••	•••••	
SIV	D/R M/L					
STLV-1	D/R M/L					
SRV/D	D/R M/L					
Filoviruses	D/R M/L					
On request	,					
	D/R M/L	·····	· · · · · · · · · · · · · · · · · · ·	·····	·····	
	D/R M/L					
2. BACTERIAL AND FUNG		CTIONS				
Mycobacteria	D/R					
Salmonella	M/L D/R					
Shigella	M/L D/R					
Leptospira	M/L D/R					
Dermatophytes	M/L D/R M/I					
On request	M/L					
·····	D/R M/L			·····		
	D/R M/L			·····		
	···, -					

3. PARASITIC INFECTIONS						
Entamoeba histolytica	D/R					
	M/L			<u> </u>		
Toxoplasma gondii	D/R	•••••	• • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	
	M/L					
Pneumonyssus	D/R		• • • • • • • • • • • • • • • • • •			
	M/L					
Helminths	D/R				· · · · · · · · · · · · · · · · · · ·	
	M/L					
Ectoparasites	D/R					
	M/L				<u> </u>	
On request						
	D/R					
	M/L					
	D/R					
	M/L					
ABBREVIATIONS:		•••••				

¹If samples of sufficient size (at least 10 animals per unit) are not gathered at same date (e.g. necropsies or samples from outgoing animals, the test period should be indicated.

²REMARKS: A: no further testing because agent is known to be present in unit
 B: region is officially free of disease carriers
 C: animals are vaccinated against disease

- X: others (e.g. identified helminths or 'apathogenic strain')